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It is possible to calculate such an integral by a very 
simple method, the application of which is limited neither 
by the shape of the crystal nor by its absorption power. 
The precision of the result can be fixed at will. The method 
of calculation is suitable for computer programming. 

The principles of this method are as follows: 
(1) Preliminary operations: the equations of the crystal 

faces, of the incident beam and of the diffracted beam 
must be given in cartesian coordinates. 

(2) A point is chosen at random inside the volume of the 
crystal (this is why the method is a Monte Carlo one). 

(3) One calculates the length of the X-ray path from the 
crystal surface to the point (incident beam) and from 
the point to the crystal surface (diffracted beam). 

(4) The value of exp( -# l )  is calculated and memorized. 
(5) Another point is chosen at random, the corresponding 

value of exp( -# l )  is calculated and memorized, and 
SO o n .  

(6) After values of exp( - /d )  have been obtained up to a 
predetermined number (100 in our program), a first 
average value, A'~00, is calculated along with the r.m.s. 
deviation o-. Since the r.m.s, deviation a(N) of the aver- 
age of N values is 

¢z(N)=all/N 

one can deduce the number N of exp(-al)-values 
which must be calculated to obtain a new average with 
a predetermined r.m.s, deviation a(N). The calculations 
of exp(-#l)-values are continued until N such values 
have been collected, and the final average is the required 
transmission factor. 

The six steps outlined above are sufficiently clear as a 
general description of the method, but to make its appli- 
cation easier, it is well to explain steps (1), (2), and (3) in 
greater detail. No further explanation seem to be necessary 
for steps (4), (5), and (6). 

In programming our calculation we use three coordinate 
systems one after the other: the first, whose axes are xyz, 
is the direct reference system, which in general is non- 
orthogonal; the second, whose axes are xoyozo, is orthog- 
onal, where Xo=X, yo is the normal to x in the plane xy; 
the third, whose axes are xayaza, is again orthogonal, where 
xa is the projection of the incident beam on the reflexion 
plane, and za is the normal to the reflexion plane. Obviously 
the first two reference systems are valid for any diffraction, 
whereas the third varies according to the diffraction in 
question. 

At the beginning, the first system (x,y,z) is used to ob- 
tain the coordinates of the crystal vertices, the equations 
of the crystal faces, the equation of the conic surface in- 
cluding all possible incident beams and the equation of the 
conic surface including all possible diffracted beams of a 
selected diffraction triplet. After that, all these coordinates 
and equations are transformed to the second (orthogonal) 
system xoyozo 

The equations of the two straight lines which are the 
intersections of the incident-beam-cone and the diffracted- 
beam-cone are then deduced. The resultant coordinates and 
equations are then further transformed to the system xayaza. 
A point Ox is chosen at random inside the crystal volume. 
The origin of the system is set at O1. Now the incident 
and the reflected beams are lying in the xaza plane. The 
coordinates of the points along the incident beam where 
it meets each of the crystal faces (produced if necessary) 
are calculated; only the nearest point is relevant; the length 
of the path of the incident beam is calculated; the same 
is done for the diffracted beam. The value of exp( -# l )  is 
now readily calculated. The calculation continues as indi- 
cated in steps (4), (5), and (6). 

On this basis a FORTRAN program has been compiled, 
which is suitable for crystals of any absorption and form 
(provided they have no re-entrant angles) and for intensities 
measured from Weissenberg and Buerger photographs. On 
an IBM 7094 computer the time needed for assemblage is 
about two minutes, the time needed to calculate one trans- 
mission factor for a crystal of rather simple form (6 faces, 
maximum length 0.2 mm) with a r.m.s, error of 3 % is 
about 14 seconds. The computing time is proportional to 
the square of the precision required, to the number of the 
crystal faces and to/~ times the dimensions of the crystal. 
The program can easily be adapted for use with other 
experimental data, or with crystals with re-entrant angles, 
or with curved boundaries. 

Our method of calculating transmission factors has some 
features similar to the method of Busing & Levy (1957). 
Recently Coppens, Leiserowitz & Rabinovich (1965) and, 
a few months later, Wuensch & Prewitt (1965) have re- 
described the Busing & Levy (BL) method, in a way sui- 
table for general application. The BL method differs from 
ours mainly in that the X-ray path is calculated for a 
regularly spaced grid of points. The precision obtained is 
known only at the end of the calculation, and, if greater 
precision is needed, the calculation must be done again. 
With our method the precision is predetermined at will. 

As far as the difficulty of programming is concerned, our 
method is very simple. The BL method with its Gaussian 
quadrature seems to be more complicated from this point 
of view. The computing time of the BL method could be 
shorter, but we are unable to predict this with certainty, 
as until now a general program of the BL method is not 
available to us. In any case our program is not very time- 
consuming. 
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The diffraction spots recorded with a non-integrated Weis- (1961) studied microphotometer traces of such spots and 
senberg camera are generally split owing to the ~x, ~2 have derived a correction factor C(0) which is applied to 
doublet of the characteristic K~ X-ray line. Rae & Barker the measured peak height to yield the integrated intensity 
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for each spot. It is clear from their formulation that the 
spot separation is given as A(20), and this can only be the 
case for a normal-beam zero-level photograph where the 
film coordinate Y equals 20 directly. In fact, the numerical 
examples used to illustrate the correctness of their expres- 
sion are for hkO intensities. It is the purpose of this note 
to examine the validity of their result for other camera 
settings which are used to collect three-dimensional intensity 
data. The symbols used in this treatment are the standard 
ones originally defined by Buerger (1962) and those intro- 
duced by Rae & Barker. 

Assume that the intensity ratio of the spots due to the 
~tl, ez doublet is r (>  1), that the intensity distribution for 
each is triangular with halfwidth b and that  their separation 
is A(Y), both in angular measure. The correction factor C 
is applied to the resultant peak height when the spots are 
not resolved (d < b) or to the maximum peak height when 
the spots are partially resolved (b <A <2b) or completely 
resolved (d _> 2b). Then it can be shown that 

C=  1 + 1/[(1 +r)biA - 1] for A <b  
C= 1 + 1/r for d > b 

The problem then is to express d in terms of the parameters 
of the spot position, diffraction conditions and camera set- 
tings. For the general case where a reciprocal lattice level 
is recorded with inclination angle/~ of the camera and level 
setting v of the screen, it may be shown that the film co- 
ordinate 1 r of a reflexion is given by 

cos 1 r = (cos 2 0 -  sin v sin u) cos u cos v. 

The spot separation can then be expressed as 

A = A(Y) = (d Y/d2)A2 
= cosec Yd(cos Y)/d2A2 

where 
du/d2=o 
dr~d2 = (sin v -  sin/~)/2cos v 
dO/d2 = tan O/2 , 

and after differentiation and substitution one obtains the 
result 

For any other case, such as a normal-beam upper-level 
photograph where ~ = 0 the result is more complicated and 
one can expect the splitting to vanish at some value of Y, 
below which the splitting would be anomalous. If such a 
method of recording intensity photographs is used, the 
general expression given above will have to be evaluated 
for that particular case. 

The half-width of the unresolved spot is still given by 
c r = b + d / l + r ) ,  and it follows that, for the three special 
cases considered, the value of b can be obtained by plotting 
the measured half-width a for low Y values against tan Y/2 
and extrapolating to zero Y. In the equi-inclination case 
the slope will differ by a factor cos2v from the anti-equi- 
inclination case. After the value for b has been obtained 
the factor C(1 r) can be tabulated along the lines suggested 
by Rae & Barker. 

There is another convenient way in which the correction 
factor can be formulated. Let Y0 be the value of Y above 
which the spots are completely resolved. Then 

C= l + l/r for Y> Yo 

= 1 + 1/[(1 +r)do/d-  1] for Y< Yo, 

where 

and 

d = t a n  Y/2 

do = tan 1%/2 (for the three special cases). 

It is suggested that this method of applying the correction 
factor may be simpler than that employed by Rae & Barker. 
Instead of the parameters 2, d2 and b (deduced by extra- 
polation), only the one parameter Y0 (obtained directly 
from the film) is used. 

The method of Rae & Barker has been rigorously extend- 
ed to cover with minor alterations the case of equi-inclina- 
tion and anti-equi-inclination settings, which includes nor- 
mal-beam zero-level photographs. For the general case, 
more complicated expressions are required, and this includes 
the case of normal-beam upper-level photographs, where 
the splitting will be anomalous near the centre of the film. 

A(Y)=(A212) 

The straight-through position on the film is given by Y= 0, 
and one would normally expect the splitting to vanish there. 
This is true only for ix= + v, i.e. equi-inclination or anti- 
equi-inclination setting which includes the normal-beam 
zero-level case discussed by Rae & Barker. We find for 
these three cases the following results: 

(i) Normal-beam zero-level u = 0, v--- 0 and Y -  20 
d(g)  = 2(A2/2) tan Y/2 = (2A2/2) tan 0 

in agreement with Rae & Barker. 

(ii) Equi-inclination ~ = - v 
A(Y) = (2A2/2) tan Y/2/cos2v. 

(iii) Anti-equi-inclination g = v 
A( Y)=(2A2/2) tan Y/2 . 

[cos v(1 + C O S 2 f l  - -  sin vsin/~)- cos ~cos Y (1 + cos21 p- sin vsin/~)] 
sin Ycos/~cos2v 

Although these results may not  affect the actual value of 
the correction factor greatly, it is satisfying from a com- 
putational point of view to use the correct analytical expres- 
sion for the factor. The factor as derived is applied to 
photometrically measured peak heights, but since visual 
intensity measurements are generally believed to estimate 
maximum photographic density, it follows that this factor 
can be applied to both visually and photometrically meas- 
ured intensities. 
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